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ABSTRACT 

In this paper, we introduce three operations on planar graphs that we call face 
splitting, double face splitting, and subdivision of hexagons.We show that the 
duals of the planar 4-connected graphs can be generated from the graph of the 
cube by these three operations. That is, given any graph G that is the dual of a 
planar 4-connected graph, there is a sequence of duals of planar 4-connected 
graphs Go, G1 ..... G n such that Go is the graph of the cube, G n = G, and 

each graph is obtained from its predecessor by one of our three operations. 

1. Introduction 

It is a well known theorem that the planar 3-connected graphs can be generated 

from the graph of the tetrahedron by a process known as face splitting (see 

[2] and [3] for related results). In this paper we investigate the problem of  gen- 

erating the planar 4-connected graphs. Our main theorem is that the duals of  

the planar 4-connected graphs can be generated from the graph of  the cube using 

three operations; that is, given any graph G that is the dual of a planar 4-connected 

graph, there is a sequence Gx, G2, "-, G, such that Gx is the graph of  the cube, 

G, = G, Gi is the dual of a planar 4-connected graph and can be obtained from 

G i_ ~ by one of our three operations. 

2. Preliminary Definitions 

Since all graphs in this paper are planar, we shall omit the word 

planar from here on. We shall use the terms isomorphic and homeo- 

morphic when speaking of graphs. Two graphs are i s o m o r p h i c  provided 
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there is a one-to-one correspondence of the vertices of one to the vertices of the 

other such that two vertices determine an edge of one if and only if the cor- 

responding vertices in the other graph determine an edge. When we speak of 

two graphs being homeomorphic, we mean that they are homeomorphic in the 

topological sense, thus homeomorphism is weaker than isomorphism. 

A path in a graph is a sequence of vertices vl,v2, ..., o n such that for all 

1 < i _< n -  1, vi and v~+ 1 determine an edge of the graph and no vertex appears 

twice in the sequence. If the set of vertices of G2 is a subset of the set of vertices 

of G1 then G1 ~ G2 is the graph consisting of the edges in G1 but not in G2 

and their vertices. If V is a set of vertices in G then G ,~ V is the subgrapb of G 

determined by the vertices of G that are not in V. 

If  H is a subgraph of G then the complement of H (in G) is denoted by ,-, H and 

is the graph G -,~ H .  The vertices of attachment of H are the vertices belonging 

to both H and ,,~ H .  

A graph G2 is a refinement of GI provided G2 can be obtained from G1 by 

replacing some of the edges of G1 by paths. A vertex of G is a major vertex pro- 

vided it has valence at least three; it is a minor vertex if it has valence two. A 

graph G2 is a contraction of G~ provided G~ and G2 are homeomorphic and G2 

contains no minor vertices. An arc of a graph G is a subgraph of G that is homeo- 

morphic to a segment whose endpoints are major vertices of G, and whose other 

vertices (if any) are minor vertices of G. If  G~ and G2 are two graphs then by 

Gt u G2 we mean the graph whose vertex set is the union of the vertex sets of 

Gx and G 2 and whose edges are the edges of G~ o r  G 2 . 

We shall denote the edge with vertices v~ and v2 by vlv2. If va and v2 are vertices 

of an arc of G, then vlv2 denotes the path in the arc from v~ to v2. The arc v~v2 

will always be well defined in the graphs in this paper. 

A graph G is n-connected provided that between any two vertices of G there 

are n independent paths (that is, paths that meet only at their endpoints). Equiv- 

alently, a graph is n-connected provided that it has at least n + 1 vertices and 

cannot be disconnected by removing fewer than n vertices. 

If G is embedded in the plane l-I, then the faces of G are the subgraphs of G 

that bound the connected components of 1-I ~ G. 

By an n-cycle in G we mean a sequence F1, F 2 , ' " , F , ,  n --- 3, of faces of G 

such that for 1 < i < n - l ,  F i and F~+a have a common vertex and F,  and F 1 
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have a common vertex. An n-cycle is nontrivial provided no vertex belongs to 

more than two faces in the cycle. 

If G is embedded in the plane we can construct a graph G*, called the dual 

of G, by placing a vertex of G* in each face of G and joining two vertices of G* 

if and only if the corresponding faces meet on an edge. 

We shall define a graph to be nice if its contraction is the dual of a 4-connected 

graph. 

We shall say that a graph G 2 is obtained from a graph G1 by splitting face F 

of G1 provided we can get G 2 by adding an edge across face F .  There are three 

ways this can be done (see Fig. 1) depending on how many new vertices are 

introduced by the splitting. 

Fig. 1. 

We shall say that G 2 is obtained from G1 by subdividing a hexagon F of G1 

provided G2 is obtained by adding a vertex and three edges to a six-sided face F 

of G1 as shown in Fig. 2. 

Fig. 2. 

Our third operation is called double face splitting. It consists of splitting 

two quadrilateral faces meeting at two 3-valent vertices as illustrated in Fig. 3. 

Fig. 3. 

If  F is a face of G with three major vertices, we shall call F a triangular face. 

If F has four major vertices, we shall call F a quadrilateral face. Pentagonal, 

hexagonal faces, etc., will be defined similarly. 
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3. Preliminary lemmas 

LEMMA 1. A 3-connected graph remains connected when we remove the 

vertices of one face of the graph. 

PROOF. By a theorem of Steinitz [2] every planar 3-connected graph is the 

graph of a 3-dimensional convex polytope. It follows from a theorem of Balinski 

[1] that the graph G of a 3-dimensional convex polytope cannot be disconnected 

by removing vertices of just one face of G. Since faces of the polytope correspond 

to faces of the graph the proof  is complete. 

LEMMA 2. The dual of a 3-connected graph is 3-connected. 

This is a well-known theorem that may be deduced from Steinitz' theorem. 

LEMMA 3. Suppose the vertices vx, v 2 and v 3 separate a 3-connected graph 

G. Then there is a 3-cycle F1, F2, F3 such that Vx belongs to F 1 and F2, v2 

belongs to F2 and F3, and v3 belongs to F 3 and F1. 

PROOF. Let FI ,F  z , . . . ,F  ~ be the faces of G that contain vl .  The set of  edges 

of FI, . . . ,F"  that do not meet v~ will form a simple circuit C that meets every 

connected component of G ,-~ {v~, v2, v3}, for if C missed one of the components 

then {v2,v3} would separate G, contradicting the 3-connectedness of G. In order 

to separate C, the vertices v2 and v3 must lie on C. 

The vertices v2 and v3 cannot lie on the same face of the sequence F ~, . . . ,F k 

because this would imply that we could disconnect G by removing vertices of 

one face of G. 

We may now choose two faces of F 1, ..., F k, one containing vl and v2 and one 

containing v x and v a . By repeating this argument using faces surrounding v2 

we can get a face containing v2 and v 3 . 

Now we shall characterize the duals of 4-connected graphs. 

LEMMA 4. G* is the dual of a 4-connected graph G if and only if G* is 3-con- 

nected and has no nontrivial 3-cycles. 

PROOF. Suppose F1, F2, F3 is a 3-cycle in a graph G with vertices vl ,  v2 and v 3 

such that v~ belongs to F~ and F2,  V 2 belongs to F 2 and F a ,and v3 belongs to 

F3 and F 1 . In the dual G*, corresponding to Vl, v2 and v3 will be faces F*, F *  and 

F~, and corresponding to F1, F2 and F 3 will be vertices v*, v2, v3, with v* be- 

*belonging to F* and F2*, and v 'belonging to F*  and V*. longing to F* and F*, v 2 

Thus we see that a 3-cycle in a graph corresponds to a 3-cycle in the dual. 
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Suppose G is 4-connected. Then the only 3-cycles that G could have would 

be those surrounding triangular faces of G, for otherwise the 3-cycle would 

provide us with three vertices that separate the graph. This implies that in G* 

the only 3-cycles are trivial ones that surround 3-valent vertices. It also follows 

that G* is 3-connected because it is the dual of 3-connected graph. 

Suppose now, that G* has no nontrivial 3-cycles and is 3-connected. This implies 

that G is 3-connected and the only 3-cycles in F are those surrounding triangular 

faces. If  G were not 4-connected then it could be disconnected by removing 

three vertices v~, v2 and v 3 . Thus there is a 3-cycle Fa, F2, F3 such that v x belongs 

to F~ and F2, v2 belongs to F 2 and F3, and v 3 belongs to F a and F 1 . This implies 

that vl, v2, and v3 are vertices of a triangular face of G, contradicting the fact 

that vl, v2, and va separate G. 

LEMMA 5. I f  G~ is the dual of a 4-connected 9raph and G2 is obtained 

from G1 by splittin9 a face of Gt in such a way that G2 has no trianoular faces, 

then G2 is the dual of a 4-connected graph. 

P~OOF. One can easily show that the only nontrivial 3-cycle that can be created 

by face splitting in G~ is a 3-cycle surrounding a triangular face, thus the 1emma 

follows from Lemma 4. 

LEMMA 6. I f  G 1 is the dual of a 4-connected 9raph and G2 is obtained 

from G1 by subdividin9 hexagon F of G 1 , then G2 is the dual of a 4-connected 

9raph. 

PROOF. No nontrivial 3-cycle in G2 can contain two or three faces of G2 

inside F .  If  a nontrivial 3-cycle contained one face of G2 in F ,  then replacing 

that face by F would give a nontrivial 3-cycle in G1. If a nontrivial 3-cycle in 

G2 contains no face of G2 in F ,  then this is also a nontrivial 3-cycle in Gx. 

LEMMA 7. I f  G1 is the dual of a 4-connected 9raph and G2 is obtained 

from G 1 by double face splitting, then G 2 is the dual of a 4-connected 9raph. 

PROOF. Let us add the two edges to G~ one at a time. Adding the first edge 

creates one nontrivial 3-cycle. Adding the second edge destroys the 3-cycle and 

does not create any new nontrivial 3-cycles, thus by Lemma 4 the proof is complete. 

LEMMA 8. The dual G* of a 4-connected graph G contains a refinement 

of the 9raph of the cube. 

PROOF. Let F ~, ..., F k be the faces of G* that meet some face F of G*. Let 
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F I, .--, F k be their cyclic order around F .  Since G* contains no nontrivial 3-cycles 

it follows that any two non-consecutive faces in F 1 ...,F k, meet only on vertices 

of F .  I f  we now take the set of edges that are edges of the Fi's but miss F ,  we 

have a simple circuit C missing F .  

The face F has at least four vertices, thus we can get a refinement of the graph 

of the cube by taking F ,  C,  and four disjoint edges of G* joining F and C. 

LEMMA 9. I f  H is a subgraph of the dual of a 4-connected graph G and if 

H1 is a subgraph of H with three vertices of attachment in H, then there is a 

path in G joining H to ~ H and missing the vertices of attachment, unless H1 

consists of a vertex and the three edges meeting it. 

PROOF. If all paths in G from H to ~ H passed through the vertices of attach- 

ment, then these vertices would separate G. These three vertices would then 

determine a nontrivial 3-cycle in G unless H1 consists of a single vertex and the 

three edges of G meeting it. 

4. The main theorem 

THEOREM 1. 1f  G is the dual of a 4-connected graph then G can be generated 

from the graph of the cube by face splitting, double face splitting and sub- 

division of hexagons. 

PROOF. Our proof is by induction on the number of edges of G. The theorem 

is clearly true when e = 12. Suppose that the theorem is true for all graphs with 

fewer than n edges and suppose G has n edges (n > 12). 

There is a second inductive argument in our proof. We shall now show that 

for every integer k, 12 __< k < n, there exists a nice subgraph of G with at least k 

arcs whose contraction can be generated from the graph of the cube by face 

splitting, double face splitting, and subdivision of hexagons. This we shall prove 

by induction on k. Proving this clearly will complete the inductive step of our 

first inductive argument. Our second induction is started by Lemma 8 when k = 12. 

Suppose that 12 < k __< n. Let H k be the subgraph of G guaranteed by the 

second inductive hypothesis and let G k be its contraction. If H k has more than 

k arcs we are done thus we assume H k has exactly k arcs. 

Our proof now consists of two parts, the first part being the case where H k 

contains minor vertices. 

Let A1 be an arc in H k containing a minor vertex. There must be a path in 
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G ~ H k joining some interior vertex of A~ to some arc of H k other than the 

arc A1, for if not then we could disconnect G by removing the endpoints of  A1. 

Let v 1 and v2 be the endpoints of F with vl on A~ and v2 on another arc A 2. 

I f  adding F to Hk does not create any triangular faces then the contraction 

of H k ~d F is the desired graph. That is the contraction of H k u F is the dual 

of  a 4-connected graph (by Lemma 5), it is homeomorphic to a subgraph of G 

(namely Hk L; F) ,  it can be generated from the graph of the cube by our opera- 

tions, and Hk U F has at least k + 1 arcs. 

Suppose now that any arc we add to Hk with endpoints on distinct arcs creates 

a triangular face and suppose vlv  2 is such an arc with vl on arc A~ of Hk and v2 

on arc A2 of H k, with A1 and A2 meeting at v3. I f  we remove vlv3 from 

Hk U v~v2, we obtain a graph whose contraction is 3-connected and has no 

nontrivial 3-cycles (we leave this to the reader to verify), thus we will have a good 

graph. I f  v3 has valence greater than three in Hk then our new graph has more 

arcs than H k and fewer edges than G. It  follows by induction that the contraction 

of this new graph can be generated by our operations and we are done. 

From here on we shall assume that any arc that we may add with endpoints 

on distinct arcs will have its endpoints on two arcs of  H k that meet at a vertex 

that is 3-valent in n k.  

We now consider several cases. 

o b c d e 

Fig. 4. 

Case I. We may add two arcs to H k a s  illustrated in Fig. 4. In Figs. 4a, 4b, 

and 4e we may remove cf ,  obtaining a good graph which by induction can be 

generated by our operations. In Fig. 4c we may remove ed obtaining a good 

graph which by induction cart be generated by our operations. In Fig. 4d we may 

remove cf unless c is 3-valent and the face of  H k containing d, c and e is a quadri- 

lateral. In this case we may remove ed unless d is 3-valent and the face of H k 

containing d, c and f is a quadrilateral. But if this is also true then H k U eb w a f  

is obtained from H k by double facet splitting. In each case we have created a 
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nice subgraph of G with more than k ares that can be generated by our operations. 

From here on we shall assume that we cannot add an arc to H k without produc- 

ing a triangle and that we cannot add two arcs to H k a s  illustrated in Fig. 4. 

Case II. We may add an arc to H k a s  illustrated in Fig. 5. We shall assume 

that among aIl graphs isomorphic to H k k.J a f  that this one encloses the largest 

number of faces of G in the face F of H k k.J ac determined by a, f and c. 

Fig. 5. 

Now consider the subgraph E of  G consisting of F and everything inside F.  

By Lemma 8 there must be some arc oh with g on one of the ares af, fc or ac, 

with h not in E and with the arc missing a, f and c. Figure 6 shows five of the 

six possible positions of the arcs. 

Fig. 6. 

The sixth possible position is illustrated in Fig. 7 and is only possible when the 

face of H k containing d, f and c is a quadrilateral. In this case we remove dg 

from H k k . ) a f L ) g h  producing a good graph whose contraction, by induction, 

can be generated by our operations. 

Fig. 7. 

All other positions are ruled out by the maximality of  F or by our assumption 

that certain arcs or combinations of arcs do not exist. 

Returning to the other five ways of adding ares, we observe that if c has valence 
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greater than 3 and if we can add an arc as in Fig. 8a or 8b, then we can remove 

bc to obtain a good graph which by induction can be generated by our operations. 

From here on we shall assume that an arc can be added as in Fig. 8 only if c 

is 3-valent. Note that from here on we cannot add an arc as in Fig. 8b because 

of the maximality of  F .  We now add one of each of the remaining four types of  

o b 

Fig. 8. 

! 

arcs in Fig. 6 in G. We shall call the new graph H k. Taking symmetry into 

account, we have eight different possibilities depending on how many such 

arcs are present. These are illustrated in Fig. 9. The heavy lines are for Hk U ac.  

The lighter Sines indicate tbe new arcs that may be added. In each case we have a 

subgraph E '  of  H k with three vertices of  attachment x, y and z.  By Lemma 9, 

there is an arc from E '  to its complement missing x, y and z .  

• x x \ 

a b c d e 

/ X 

f g h j 

Fig. 9. 

The reader may check that in Figs. 9b, 9c, and 9h, no such arc may be added 

without violating the maximality of  F or the non-existence of  certain arcs or 

combinations of  arcs. In the remaining figures, there is one kind of arc which may 

be added. These arcs are indicated by dashed lines. In this case we add the arc 
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and we have a new subgraph E" which must admit a path from E" to its com- 

plement, missing its vertices of attachment. The reader may check that no other 

such arc can be added. 

Case III. We cannot add an arc as in Case II, but we can add an arc as 

illustrated in Fig. 10. Again we assume that the face F is maximal and we con- 

sider the subgraph E enclosed by this face and we determine the possible ways 

an arc may join E to its complement. 

Fig. 10. 

The case where an arc as illustrated in Fig. 11 can be added, can be taken care 

of as in Case I. 

Fig. I 1. 

The other combinations of arcs that can be added are illustrated in Fig. 12. 

Again, after adding these arcs, we have a subgraph E '  such that an arc must 

join it to its complement and miss its vertices of attachment. In Fig. 12b, no 

such arc can be added. In Fig. 12a, one arc can be added as indicated, but after 

this arc is added we may argue as in Case II and conclude that no other arc may 

now be added. 

Q b 

Fig. 12. 

Before we do the cases in Figs. 12a 12d and 12e we shall treat the case where 

there exist two arcs as in Fig. 13. If  we remove xy we produce a nice graph which 
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by induction has a contraction that can be generated by our operations. From 

now on we may assume that there do not exist two arcs as in Fig. 13. 

Fig. 13. 

This now leaves us with only one type of  arc that may be added in Figs. 12c 

and 12d and no arc that can be added in Fig. 12e. In Figs. 12c and 12d, we add 

the arc and then use the argument from Case II to conclude that we cannot add 

another one, getting a contradiction. 

Case IV. There do not exist any arcs as in Cases II and III, but an arc as 

illustrated in Fig. 14 exists. 

Fig. 14. 

We argue as above. This time because we have ruled out so many types of 

arcs, there are only three types of arcs that can join E to its complement. These 

are illustrated in Fig. 15. 

G b r 

Fig. 15. 

In Fig. 15a we remove ab producing a good graph and by induction we are 

done. In Fig. 15b, we have a graph obtained from H k by subdividing a hexagon. 

In Fig. 15c, the graph enclosed by ab, bc and ac will admit an arc joining 

it to its complement and missing its vertices of attachment. This can be done 

in essentially two ways (Fig. 16). 
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o b 

Fig. 16. 

In Fig. 16b, we remove ab and ce producing a good graph, and by induction 

we are done. In Fig. 16a, the subgraph enclosed by ad, de and ae must admit 

an arc joining it to its complement and missing the vertices of  attachment. This 

can be done in two ways (Fig. 17). In Fig. 17a, we produce the desired good 

graph by removing ab, ec and db. Now by induction we are done. In Fig. 17b, 

we remove ab, ec and dg and by induction we are done. 

a d ~ 

a b 

Fig. 17. 

We now turn to the second half of our proof: the case where H k contains no 

minor vertices. Among all subgraphs of G homeomorphic to H k we shall assume 

that Hk has a maximum number of vertices. 

Let v 1 be a vertex of H k that meets an edge of G that is not in Hk. If  we begin 

on this edge and travel along edges of G we eventually return to Hk. Furthermore, 

we will not return to an endpoint of an edge of H k that meets vl (note that each 

arc of Hk is an edge of Ilk) because we could replace the edge by our path and 

increase the number of vertices, contradicting the maximality of Hk. If  we add 

an arc to H k we will produce the desired graph unless adding the arc creates a 

triangular face (or possibly two triangular faces). This case, however, is disposed 

of by the argument of Case IV of the first part of our proof. 

5. Remarks 

One might ask whether all three of our operations are necessary, particularly 

double face splitting and subdividing hexagons. To see that double face splitting 

is necessary, observe that it is needed to produce the graph that one obtains by 

applying double face splitting to the graph of the cube. To see that subdivision 
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of hexagons is necessary, observe that the graph of the rhombic dodecahedron, 

Fig. 18, can only be obtained from a smaller dual of a 4-connected graph 

subdividing a hexagon. 

Fig. 18. 

Generating the duals of the 4-connected graphs is equivalent to generating the 

4-connected graphs. The reader may, if he wishes, restate the results in dual 

form. In this case the operations would be three types of "vertex splitting". 
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